МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛРУСЬ

УТВЕРЖДАЮ

Первый заместитель Министра
В.А. Ходжаев
2010 г.

Регистрационный № 094-0710

МЕТОД ОПРЕДЕЛЕНИЯ АКТИВНОСТИ N-АЦЕТИЛТРАНСФЕРАЗЫ 2 В СЫВОРОТКЕ КРОВИ

инструкция по применению

УЧРЕЖДЕНИЕ-РАЗРАБОТЧИК:

Учреждение образования «Гомельский государственный медицинский университет»

АВТОРЫ:

Сатырова Т.В.

кандидат фармацевтических наук Алексеев Н.А. кандидат медицинских наук, доцент Михайлова Е.И.

Гомель, 2010

Скорость ацетилирования некоторых лекарственных средств контролируется генетическим полиморфизмом фермента N-ацетилтрансферазы-2 субстратам NAT2 следует отнести такие лекарственные препараты, как сульфаниламиды, изониазид, прокаинамид, гидралазин (апрессин), нитразепам, призидилол (прекапиллярный вазодилататор, β-адреноблокатор), амринон (инотроп), эндралазин, аминоглутетимид (ингибитор синтеза стероидов в надпочечниках и периферической ароматизации надпочечниковых андрогенов), клоназепам и кофеин.

Полиморфизм N-ацетилтрансферазы-2 в большинстве случаев показывает бимодальное распределение ацетилирующей способности и проявляется наличием в популяции быстрых и медленных ацетиляторов. При изучении ацетиляторного статуса наиболее важными вопросами являются исследование эффективности терапии лекарственными препаратами, подвергающимися полиморфному ацетилированию; выявление побочных эффектов лекарственной терапии, связанных с полиморфным ацетилированием лекарственных средств.

Определение типа ацетилирования важно для оптимизации терапии, так как у медленных ацетиляторов могут развиваться осложнения, а у быстрых ацетиляторов фармакотерапия может оказаться неэффективной. Например, при применении сульфасалазина у медленных метаболитов значительно чаще побочные эффекты виде головной боли, проявляются В тошноты, гастроинтестинальных И гематологических расстройств. Исследования изониазида показали, что при стандартном дозировании у лиц с медленным фенотипом имеется большое число побочных реакций в виде периферических невритов и гепатотоксичности.

Важной современной тенденцией в развитии фармакотерапии является подбор лекарственного средства каждому конкретному пациенту с учетом его биохимических особенностей. Получение и анализ фармакогенетических касающихся особенностей метаболического данных, статуса процессов ацетилирования, позволяет адекватно оценить реакцию организма на проводимое лечение и найти баланс между эффективностью и безопасностью фармакотерапии.

Высокоэффективная хроматография (ВЭЖХ) жидкостная является современным высокочувствительным и универсальным методом анализа. Во многих случаях в настоящее время ему сложно найти какую-либо альтернативу. ВЭЖХ одновременно определять концентрации позволяет не только нескольких лекарственных веществ, но и отличается достаточной селективностью, точностью и воспроизводимостью. По этой причине, начиная с середины 70-х гг. прошлого столетия, он стал основным аналитическим методом для определения не только самих лекарственных средств, но и их метаболитов как в сыворотке, так и в плазме крови.

Мы предлагаем метод определения ацетиляторного фенотипа, который осуществляется cпомощью одновременного измерения концентрации изониазида (INH) и его ацетилированного метаболита (AcINH). В качестве лабораторных образцов рекомендуется использовать сыворотку Анализирующим высокоэффективная методом является жидкостная хроматография.

Результаты исследования показали, что данный метод обладает высокой чувствительностью и измеряет низкие концентрации как самого изониазида, так и его ацетилированного метаболита.

ПЕРЕЧЕНЬ НЕОБХОДИМОГО ОБОРУДОВАНИЯ И МАТЕРИАЛОВ

Лабораторное оборудование, применяемое при определении активности N-ацетилтрансферазы-2, должно давать возможность выполнять все необходимые этапы, начиная с подготовки пациента к исследованию и взятия лабораторных образцов до измерения концентрации изониазида и его ацетилированного метаболита.

Перечень основного оборудования и материалов:

1. Колонка хроматографическая стальная длиной 150 мм, внутренним диаметром 4,6 мм, заполненная неподвижной фазой — октилсилисиликагелем с размером частиц 3,5–5,0 мкм.

- 2. Одноразовые полипропиленовые конические центрифужные пробирки с плотнозакрывающимися крышками объемом 10-15 мл.
- 3. Одноразовые микроцентрифужные полипропиленовые пробирки объемом 1,5 мл.
 - 4. Виалы хроматографические стеклянные объемом 2,0 см³.
- 5. Дозаторы автоматические с переменным объемом дозирования (от $0.1 \text{ до } 1.0 \text{ см}^3$).
- 6. Наконечники для дозаторов автоматических одноразовые до 200 и 1000 мкл.
 - 7. Шприцы инъекционные однократного применения объемом 10 мл.
 - 8. Изониазид в таблетках по 0,1 и 0,3 г.

Перечень реактивов:

- 1. Ацетонитрил для хроматографии (Государственная фармакопея Республики Беларусь, т.1, с.352).
- 2. Вода для хроматографии (Государственная фармакопея Республики Беларусь, т.1, с.359).
- 3. Аммония ацетат (Государственная фармакопея Республики Беларусь, т.1, с.347).
- 4. Трихлоруксусная кислота (Государственная фармакопея Республики Беларусь, т.1, с.429).
- 5. Рабочий стандартный образец изониазида, содержание действующего вещества не менее 99,0%.

Перечень дополнительного медицинского и аналитического оборудования:

- 1. Жидкостный хроматограф с детектором на основе диодной матрицы или спектрофотометрический с переменной длиной волны.
 - 2. Центрифуга лабораторная типа ОПС-8 или аналогичная.
- 3. Аналитические весы с пределом допускаемой абсолютной погрешности не более $\pm 0{,}001$ г.

Набор расходных материалов и лабораторных аксессуаров:

- 1. Штативы для пробирок.
- 2. Стеклянная химическая посуда.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Метод, предложенный в инструкции, является простым, доступным и чувствительным способом одновременного достаточно измерения концентрации изониазида (INH) и его ацетилированного метаболита (AcINH). Оценка активности фермента N-ацетилтрансферазы-2 позволяет установить скорость ацетилирования, которая определяет генетически индивидуума особенности детерминированные В метаболизме веществ. Лекарственные биотрансформация лекарственных средства, которых осуществляется путем реакции ацетилирования, представлены в таблице 1.

Таблица 1 Лекарственные вещества, метаболизирующиеся путем реакции ацетилирования

Наименование лекарственного средства	Фармакологическая группа	
Бисептол, сульфасалазин и др.	Сульфаниламиды	
Прокаинамид	Антиаритмик, класс IA	
Гидралазин (апрессин), эндралазин	Прямые периферические вазодилататоры	
ДДС (дапсон)	Противолепрозное средство	
Нитразепам	Транквилизатор	
Призидилол	Прекапиллярный вазодилататор,	
	β-адреноблокатор	
Амринон	Негликозидный кардиотоник	
Анальгин (дипирон)	Анальгезирующее, жаропонижающее средство	
Аминоглутетимид	Ингибитор биосинтеза гормонов	
	надпочечников	
Клоназепам	Противосудорожное средство	
Кофеин	Психостимулятор	
Фенелзин	Психотропное средство (антидепрессант)	
Натрия парааминосалицилат	Противотуберкулезное средство	
Изониазид	Противотуберкулезное средство	

Фенотип ацетилятора способствует подбору оптимальной дозы лекарственного препарата пациентам с быстрым типом ацетилирования и выявлению безопасной дозы лекарственного препарата пациентам с медленным типом ацетилирования.

ПРОТИВОПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Осложнения, возникающие при назначении изониазида.

Описание технологии использования способа

1. Приготовление реактивов и образцов

1.1. Подготовка пациента, забор крови, получение и хранение сыворотки крови

После 12-часового периода голодания пациент должен принять изониазид в дозе 10 мг на каждый кг массы тела. Через 3 ч. после приема изониазида из локтевой вены необходимо забрать инъекционным шприцем в центрифужную пробирку 10 мл венозной крови. Образец выдержать при комнатной температуре в течение 30 мин. Пробирку не позже через 1 ч после взятия крови в течение 10 мин центрифугировать при скорости 1500g. Сыворотку перенести автоматическим дозатором с наконечником 1 000 мкл в две полипропиленовые пробирки объемом 1,5 мл типа «Еррепdorf». Образцы поместить в морозильную камеру, заморозить до -20°С и хранить при данной температуре до 1 мес. вплоть до проведения количественного анализа содержания ацетизониазида и изониазида. Температуру в морозильной камере контролировать с помощью термометра.

1.2. Подготовка образцов сыворотки крови

Подготовку проб сыворотки крови производить методом осаждения белка. К 1 мл образца сыворотки крови добавить 0,5 мл 10% трихлоруксусной кислоты. Смесь тщательно перемешать в течение 1 мин, поместить в центрифугу и центрифугировать в течение 10 мин при 3000 оборотов/мин. После этого для нейтрализации избытка трихлоруксусной кислоты к 0,5 мл надосадочной жидкости добавить 0,5 мл 0,5 М (рН 8,20) раствора

ацетата аммония. Объем вводимой пробы должен составить 10 мм³. Для каждого образца выполнить три инжекции.

Исходный раствор изониазида готовят путем растворения точной навески стандартного образца изониазида, составляющей 100,0 мг, в мерной колбе вместимостью 100 мл. В качестве растворителя следует использовать воду для хроматографии. Концентрация исходного раствора должна составить 1000 мкг/мл.

Рабочий раствор приготовить из исходного раствора изониазида. 50 Концентрация рабочего раствора должна составить мкг/мл. Градуировочные растворы различных концентраций изониазида сделать из рабочего раствора путем разведения сывороткой крови, свободной от Примерная лекарственных веществ. концентрация градуировочных растворов изониазида должна составлять 0.5-1.0-2.0-5.0-12.0 мкг/мл.

2. Подготовка хроматографа и проведение анализа

2.1. Условия хроматографического разделения

Разделение проводият в градиентном режиме. Мобильная фаза и условия изменения ее состава указаны в таблице 2.

Таблица 2. Мобильная фаза и условия изменения ее состава

Время, мин	Компонент		
	Ацетонитрил	Вода для	0,1 М раствор
		хроматографии	ацетата аммония
			(pH 6,8)
0–2	1	69	30
2-10	10	59	30
10-12	1	69	30

Установить следующие параметры хроматографического разделения:

- скорость потока 1,2 мл/мин;
- давление 100-120 бар;
- длина волны детектора 275 нм;

- температура термостата колонки 20±1°C;
- температура устройства для ввода образцов +4°C;
- время хроматографирования: 3-кратное время удерживания основного пика на хроматограмме испытуемого раствора.

2.2. Проведение хроматографического анализа

Убедиться в стабильности скорости потока подвижной фазы и температуры колонки. Впрыснуть по 10 мм³ испытуемого раствора. Получить хроматографические кривые. Примерная хроматограмма сыворотки крови пациента на фоне приема изониазида указана на рис. 1.

Рис. 1. Хроматограмма сыворотки крови пациента, содержащая изониазид

(t около 2,9 мин) и его метаболит — ацетизониазид (t около 2,4 мин)

Время выхода изониазида должно составить $2,8\pm0,1$ мин., ацетизониазида — $2,3\pm0,1$ мин. Соотношение времени выхода ацетизониазида к времени выхода изониазида должно колебаться от $0,83\pm0,03$.

3. Определение фенотипа ацетилирования

Фенотип ацетилирования определяют как скорость ацетилирования изониазида и рассчитывают как отношение концентраций ацетизониазида к изониазиду (отношение R).

В зависимости от интервала отношения R: [0–0.28]; [0.28–0.37]; [0.37-1] выделяют медленный, промежуточный и быстрый фенотип ацетилятора. Левый интервал относят к достоверно медленным, правый — к достоверно быстрым, а средний — к промежуточным или предбыстрым ацетиляторам.

ВОЗМОЖНЫЕ ОСЛОЖНЕНИЯ И ОШИБКИ, ПУТИ ИХ УСТРАНЕНИЯ

При строгом соблюдении условий метода значимые осложнения и ошибки маловероятны.

ОБЛАСТЬ ПРИМЕНЕНИЯ МЕТОДА

Результаты анализа применяются для выявления фенотипа ацетилятора в клинической фармакологии, терапии, кардиологии, фтизиопульмонологии и других областях практической медицины при назначении лекарственных средств, активное вещество которых подвергается метаболизму с помощью реакций ацетилирования (изониазид, прокаинамид, гидралазин (апрессин), нитразепам, призидилол, амринон (инотроп), эндралазин, аминоглутетимид, клоназепам и кофеин).

Метод может быть использован в учебном процессе при подготовке студентов, а также врачей терапевтического и хирургического профиля.