

Учреждение образования «Гомельский государственный медицинский университет» Кафедра нормальной и патологической физиологии

ФИЗИОЛОГИЯ ДЫХАНИЯ

Газообмен в легких Транспорт газов кровью

Лекция № 2 для студентов 2 курса

План лекции

- 1. Законы диффузии газов. Факторы влияющие, на процесс диффузии. Вентиляционно-перфузионный коэффициент.
- № 2. Транспорт газов кровью О₂ и СО₂. Кривая диссоциации оксигемоглобина.
- 3. ГАЗООБМЕН МЕЖДУ КРОВЬЮ И ТКАНЯМИ

Обмен газов в легких происходит по физическим законам $\partial u \phi \phi y$ зии. Объем диффузии O_2 составляет около O_2 O_2 O_3 O_4 O_4 O_5 O_5 O_5 O_6 O_6 O_7 O_8 O_8 O_8 O_9 $O_$

- **М/t** объемная скорость диффузии,
- М количество газа; t время диффузии
- Δ P парциального давления.
- X расстояние между двумя точками диффузии, (т.е. толщина аэрогематического барьера либо гистогематического барьеров;
- S площадь газообмена;
- К коэффициент диффузии Крога;
- α коэффициент растворимости газа.

ЗАКОН ФИКА

Парциальным давлением (ПД) называется то давление, которое оказывал бы данный газ, если бы он

один занимал весь объем смеси газов.

Закон Дальтона

Р(смеси) мм рт. ст. х **С** %

Р газа = -----

100%

Для воздуха: $P_{arm} = 760 \text{ мм Hg}$;

Процентный состав (С%) основных газов вдыхаемого и выдыхаемого воздуха (%).

ВОЗДУХ: О2 СО2 NO2

Атмосферный 21,0 0,02-0,03 79,14

<u>Альвеолярный 14, 0 5,5 80,7</u>

Выдыхаемый 16,0 4,5 79,5

Парциональное давление газов в атмосферном воздухе:

Атмосферное давление = 760 мм рт.ст. (101 кПа)

Закон Дальтона:

Р(смеси) мм рт. ст. х **С** %

Парциальное давление

Кислород 21 %

 $P_{02} = 760 \times 20.9/100\% = 159 \text{ MM pt.ct.}$

CO₂

0.03 %

 $P_{CO2} = 760 \times 0.03/100 \% = 0.2 \text{ MM pt.ct.}$

По закону Дальтона –

Парциальное давление каждого газа в смеси пропорционально его процентному содержанию газа в смеси т.е его доле от общего объема.

Расчет парциального давления в альвеолярном воздухе

$$pO2 = \frac{(760 \text{ MM. pt.ct.}) \times 14\%}{100} = \frac{100 \text{ MM. pt.ct.}}{100}$$

$$pCO_{2}$$
= -----= $\frac{40 \text{ мм. рт. ст.}}{100}$

ПД водяных паров в альвеоле является постоянной величиной равной 47 мм рт. ст.

Исходя из уравнения Фика, скорость диффузии прямо пропорциональна величине разности давлений (ΔР) — силе, обеспечивающей направленное движение молекул газа, и обратно пропорциональна x/SKα — величине сопротивления диффузии.

Разность давления здесь рассматривается между газовой средой (альвеолы) и жидкой (крови). Давление газа в жидкости характеризует величина – напряжение газа.

Напряжением газа в жидкости называется сила, с которой молекулы газа стремятся выйти в газовую среду.

Напряжение является количественным показателем газа, растворённого в жидкости

Растворимость для CO_2 значительно больше, чем для O_2 . И характеризуется α – коэф.растворимости (коэффициент Бунзена) – количество газа, способное раствориться в 1 мл жидкости при давлении газа над жидкостью 760 мм рт. ст. при $t = 0^{\circ}$ С. зависит от:

- 1) природы газа;
- 2) состава жидкости;
- 3) объема и давления газа над жидкостью
- 4) температуры жидкости При атмосферном давлении 760 мм Hg и температуре 38 $^{\circ}$ C в крови растворяется O_2 0,3 %,

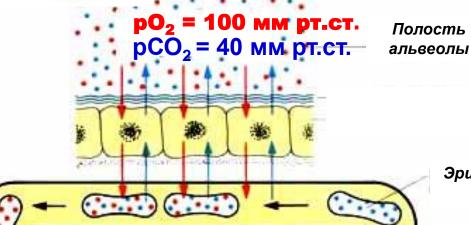
Парциальное давление и напряжение О2 и СО2

Содержание	$\mathbf{pO_2}$	pCO ₂
Альвеолярный воздух	100 мм.рт.ст.	40 мм.рт.ст
Венозная кровь	40 мм.рт.ст	<u>46 мм.рт.ст</u>
Артериальная кровь	96 мм.рт.ст	39 мм.рт.ст

Вдыхаемый воздух:

 $pO_2 = 160 \text{ mm}$

PT.CT. (21%)


 $pCO_2 = 0.2 \text{ MM}$

PT.CT. (0.03%)

Газообмен в легких и тканях

Выдыхаемый воздух:

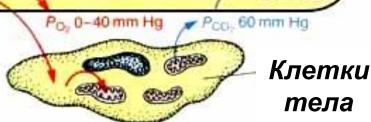
 $pO_2 = 120 \text{ MM pT.CT. } (16\%)$ $pCO_2 = 27 \text{ MM pT.CT. } (4.5\%)$

Lung Capillary

Tissue Capillary

Arteries

Артериальная кровь


 $pO_2 = 96 \text{ MM pt.ct.}$

 $pCO_2 = 39 \text{ MM pr. ct.}$

Эритроцит

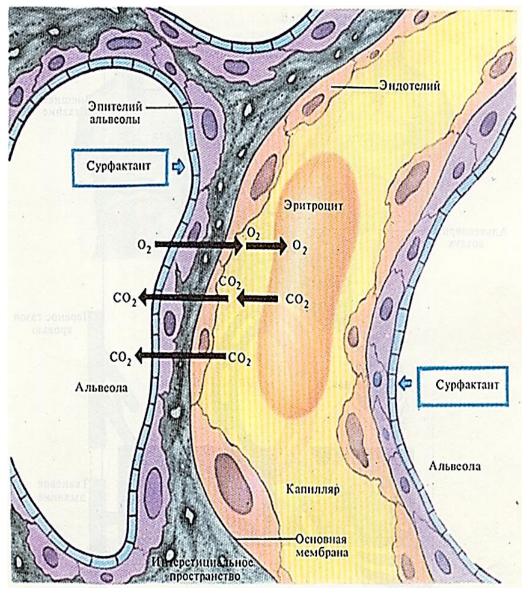
Венозная кровь

 $pO_2 = 40 \text{ MM pt.ct.}$ $pCO_2 = 46 \text{ MM pt.ct.}$

Veins

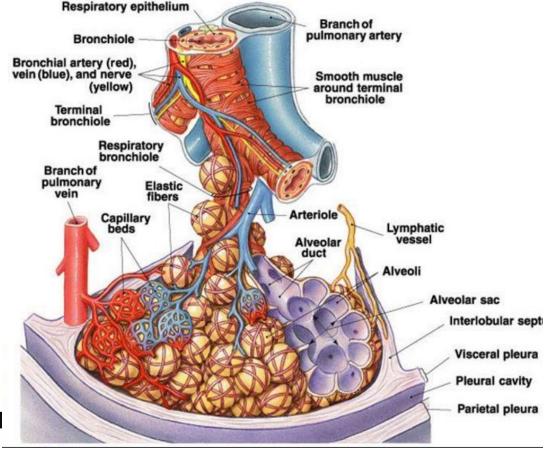
Остальные факторы диффузии по формуле Фика

Проницаемость легочной мембраны для газа характеризуется **К** -*коэффициентом диффузии Крога -* определяет количество газа (в мл), которое способно диффундировать на расстояние 1 см через 1см² поверхности при разнице давления в 1мм рт. ст. при определенной температуре.

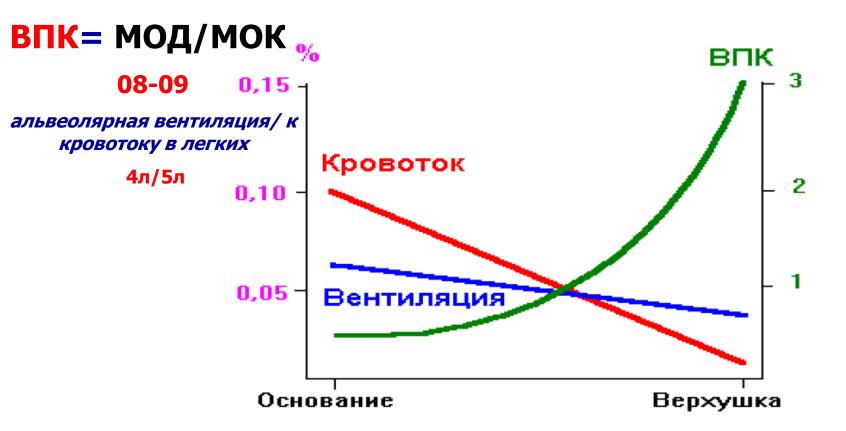

прямо пропорционально оказывает влияние **S** – площадь диффузии.

обратно пропорциональна расстояние диффузии X.

$$\frac{M}{t} = \frac{\Delta P \cdot S \cdot k \cdot \alpha}{X}$$


Расстояние диффузии X в лёгких представляет собой аэрогематический барьер

- Толщина 0,4 1,5 мкм
- слой сурфактанта выстилающий альвеолу;
- альвеолярный эпителий;
- 2-е базальные мембраны и интерстициальное пространство между эпителием и эндотелием;
- ▶ эндотелий капилляра;
 в ходе диффузии О₂ кроме
 барьера еще преодолевает:
- слой плазмы крови между эндотелием и эритроцитом;
- мембрану эритроцита;
- слой цитоплазмы в эритроците

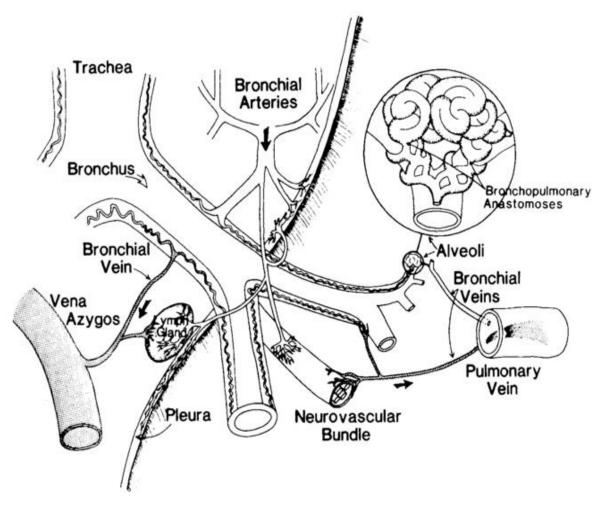

S – площадь диффузии

площадь
 контакта между
 функционирующими
 альвеолами и
 капиллярами. В одном

легком человека насчитывается в среднем 400 млн альвеол. Большая часть наружной поверхности альвеол соприкасается с капиллярами малого круга кровообращения, суммарная площадь этих контактов велика: во время выдоха около **90 м**², во время вдоха она увеличивается до **130 м**².

Соотношение вентиляции и перфузии в разных отделах легких. Распределение вентиляционно-перфузионного коэффициента (ВПК)

Перфузия – процесс, в ходе которого дезоксигенированная кровь лёгочных артерий проходит через пёгкие и оксигенируется


Система кровотока в лёгких

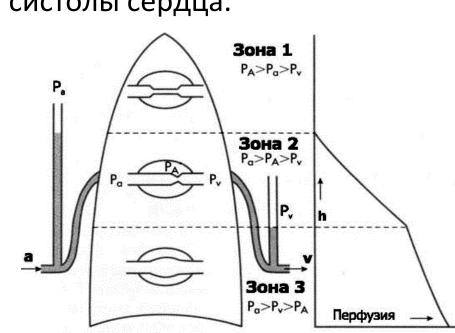
Венно-венозные анастамозы всегда в какой либо степени открыты и часть крови из бронхиальных вен большого круга поступает в пульмональные вены малого круга, по которым течёт артериальная кровь, поэтому насыщение крови кислородом становится меньше на 1-2% чем в пульмональных венулах.

Артерио-артериальные

анастамозы между

бронхиальными и пульманальными артериями открываются при прекращении вентиляции лёгкого и богатая кислородом кровь из бронхиальной артерии поступает в артерии малого круга в невентилируюмую дольку лёгкого и защищает ткань от кислородного голодания.

Соотношение между вентиляцией и перфузией по Зонам Веста


- **Зона 1** В верхушке лёгкого вентиляция превышает кровоток **ВПК** = 3 (непродуктивная вентиляция). В капиллярах верхушек лёгких кровоток снижен. Поэтому газообмен снижен.
- **Зона 2** (P_a > P_A > P_v) Как выше описывалось кровоток зависит здесь от сердечного цикла и капилляры хорошо кровоснабжаются лишь во время систолы сердца.

Поэтому перфузия непродуктивная.

B
$$\Pi$$
K = 0.6

• Зона З (P_a > P_v > P_A) — нижние две трети лёгкого. Характерен постоянный кровоток, что способствует газообмену.

 $B\Pi K = 0.8-0.9$

ТРАНСПОРТ ГАЗОВ КРОВЬЮ

- 1. физически растворённые в плазме крови
- 2. химически связанном виде.

в физически растворенном состоянии - 0,3%

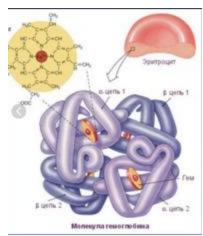
в артериальной крови содержание $O_2 - 0.3$ об.%, $CO_2 - 3.0$ об.%,

в венозной -
$$O_2$$
 - $0,11$ и CO_2 - $2,9$ of.%

- \triangleright В артериальной крови химически связанного O_2 0,20 л
- \rightarrow в венозной O_2 0,15л

ТРАНСПОРТ КИСЛОРОДА КРОВЬЮ

Гемоглобин, присоединивший O_2 - **оксигемоглобин (HbO2 или HHbO2**);

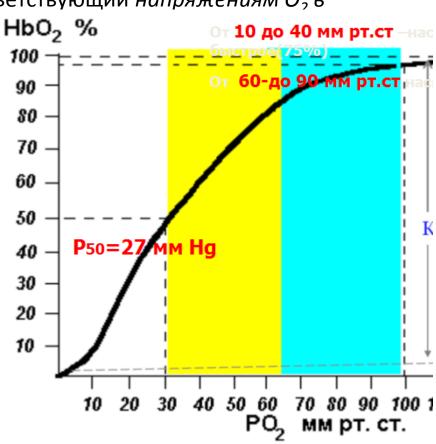

гемоглобин, отдавший O_2 , и **присоединивший H**⁺ - восстановленный, или редуцированный (HHb).

1 гр гемоглобина связывает 1,36 - 1,34 мл O_2 , в 1 литре крови содержится 140 - 150 г гемоглобина. **140 гр х** 1,34 = 187 мл. O_2

Следовательно, в каждом литре крови максимально возможное содержание кислорода в химически связанной форме составит **190 – 200**

мл O_2 , или 19 об% - это кислородная емкость крови.

Кровь человека содержит примерно **700 – 800 г гемоглобина** и может связывать **1 л кислорода**.


Кривая диссоциации оксигемоглобина, ее характеристика.

На кривой выделяют участки:

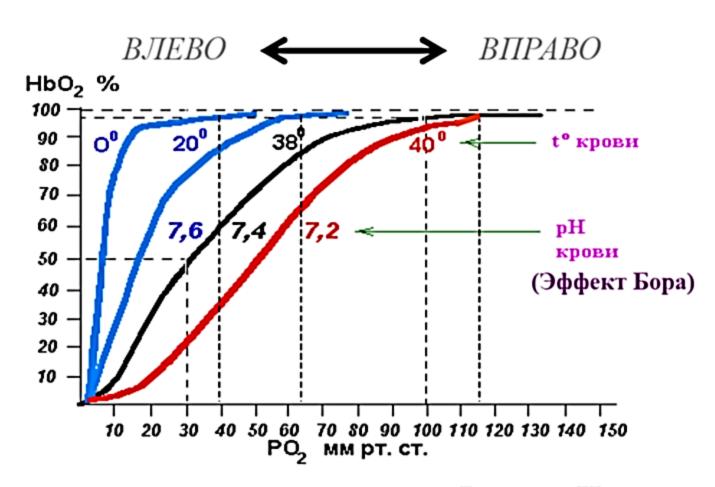
- от 0 до 10 мм рт. ст. насыщение прямо пропорциональная напряжению,
- от 10 до 50 мм рт. ст. насыщение очень быстрое, от
- 60 до 90 мм рт. ст. насыщение почти не изменяется.
- 1) **Крутой наклон** среднего участка, соответствующий напряжениям O_2 в тканях (35 мм рт. ст. и ниже), HbO₂ % от 10 до 40 м

благоприятствует отдаче O_2 в них.

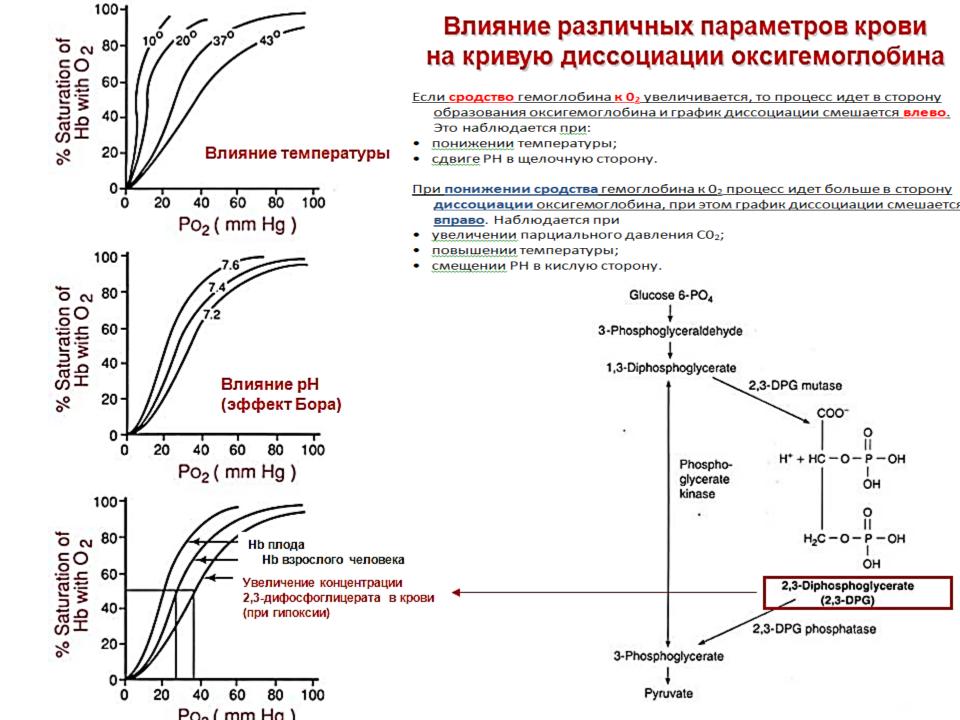
2) От напряжения **60 мм рт. ст.**, начинается Пологая часть, КДО что демонстрирует стабильность тканевого рО2 в условиях, когда рО₂ артериальной крови может уменьшаться: при подъеме в горы или на самолете, при заболеваниях легких, с возрастом. Даже когда альвеолярное рО2 снижается до 60 мм рт. ст., гемоглобин в артериальной крови все еще насыщен О2 на 89%, что только на 8% ниже нормальной 97% насыщения.

Кривая диссоциации оксигемоглобина, ее характеристика.

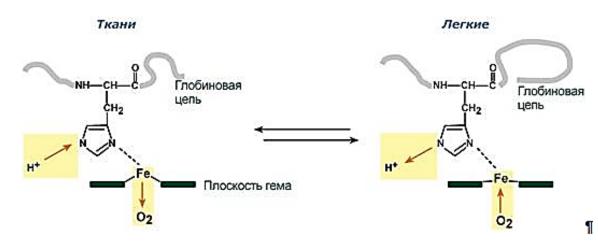
В норме при pH = 7,4 и t = 37° C:


• 1 точка соответствует 50%-ному насыщению гемоглобина кислородом — P_{50} - напряжение полунасыщения (точка разрядки по Крогу). pO_2 артериальной крови 26 мм рт. ст. В межклеточной жидкости напряжение pO_2 может быть от 20-40 мм.рт.ст., при этом градиент давления может практически

пропасть и в тканях начнётся кислородное голодание.


• 2 точка соответствует 97%-ному насыщению гемоглобина кислородом — P_{97} - точка зарядки. В норме 97%-ное насыщение гемоглобина начинается уже с напряжения кислорода pO_2 70мм рт. ст.

Сдвиги кривой диссоциации


Сдвиг влево - легче насыщение кислородом: <t; <Pco $_2$; >pH Сдвиг вправо - легче отдача кислорода: >t; >Pco $_2$; <pH

Влияние парциального напряжение углекислоты на оксигинацию

Повышение **CO₂** в крови приводит к образованию H₂CO₃, которая с образованием протона H⁺ это приводит к **эффекту Бора**:

Изменение сродства гемоглобина к кислороду в тканях и в легких при изменении концентрации ионов H+ и O₂ обусловлено конформационными перестройками глобиновой части молекулы. В тканях при присоеденении H+ к остаткам гистидина (глобиновой части), образуется восстановленный гемоглобин (H-Hb) с низким сродством к кислороду. В легких поступающий в больших количествах кислород "вытесняет" ион водорода из связи с остатком гистидина гемоглобиновой молекулы.

ТРАНСПОРТ УГЛЕКИСЛОГО ГАЗА КРОВЬЮ

Газообмен в тканях

I. При поступлении ${\bf CO_2}$ в эритроцит прежде всего происходит гидратация молекул ${\bf CO_2}$ с образованием ${\bf H_2CO_3}$

$$CO_2 + H_2O \rightarrow H_2CO_3$$

2. Образовавшаяся H_2CO_3 диссоциирует $H_2CO_3 \rightarrow H^+ + HCO_3^-$, концентрация бикарбонат-иона в эритроците возрастает и он диффундирует в плазму (в обмен на Cl^- , чтобы не нарушать ионное равновесие), где, соединяясь с Na^+ , образует бикарбонат натрия:

$$Na^+ + HCO_3^- \rightarrow NaHCO_3$$

3. При увеличении Рсо₂в крови в цитоплазме эритроцита происходит процесс диссоциации оксигемоглобина и образование восстановленного гемоглобина (при участии протона «эффект» Бора):

$$HbO_2 + H^+ \rightarrow HHb + O_2 \uparrow$$

4. Восстановленный гемоглобин является менее сильной кислотой, чем H_2CO_3 , поэтому угольная кислота вытесняет К+из калийной соли оксигемоглобина, образуя бикарбонат калия

$$KHbO_2 + H_2CO_3 \rightarrow \underline{KHCO_3} + HHb + O_2$$

5. Восстановленный гемоглобин может присоединять углекислый газ к аминогруппам глобина с образованием карбамидной связи:

$$HHb + CO_2$$
 → $HHbCO_2$ (карбогемоглобин)

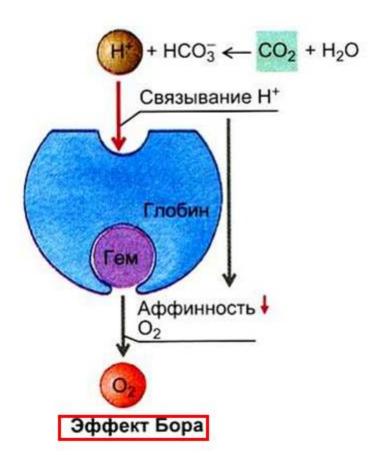
ТРАНСПОРТ УГЛЕКИСЛОГО ГАЗА КРОВЬЮ Газообмен в лёгких

1. CO₂ отщепляется от карбогемоглобина и диффундирует из венозной крови в альвеолярный воздух и образуется восстановленный гемоглобин.

Этому способствует переход O_2 по градиенту давления. Оксигенация гемоглобина ведет к снижению образования карбаминогемоглобина, поскольку уменьшает количество свободных $\mathbf{NH_2}$ групп глобина, эффекта Вериго-Холдена.

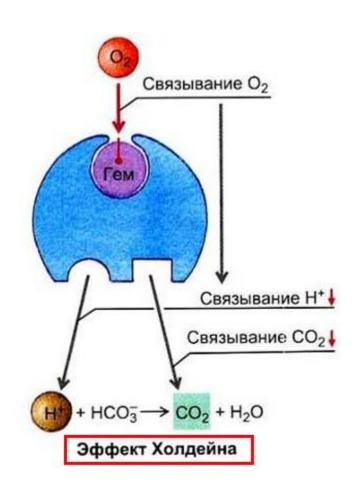
2. O_2 переходит в кровь, поступает в эритроцит и вступает в реакцию с карбогемоглобином $HHbCO_2$ с образованием H^+ , HbO_2 и CO_2 уходит в альвеолу. Протоны могут связываться с гидрокарбонат-ионами с образованием новых порций угольной кислоты $H^+ + HCO_3 = H_2CO_3$

$$HHbCO_2 + O_2 \rightarrow H^+ + HbO_2 + CO_2$$

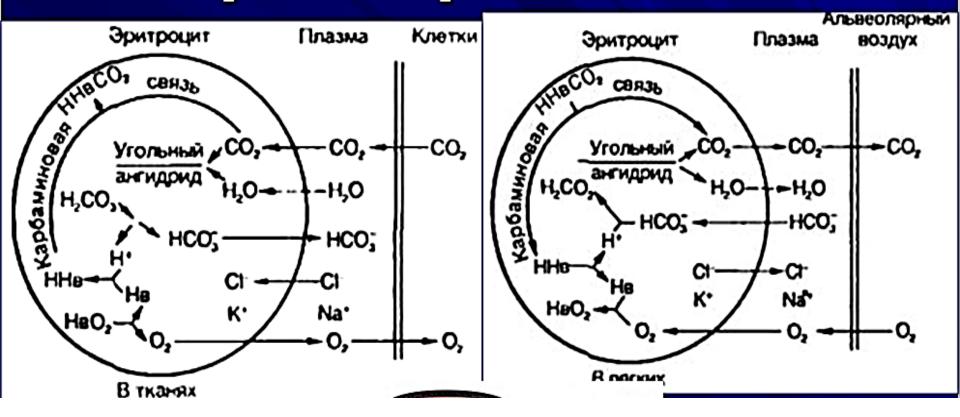

3. Далее так как соединение (HbO_2) является более сильной кислотой, чем H_2CO_3 , поэтому происходит реакция замещения между бикарбонатом калия (одна из транспортных форм CO_2) и HbO_2 . Суммарное уравнение реакции имеет вид:

4. С выходом CO₂ в альвеолярный воздух уровень CO₂ в крови резко падает, это активизирует карбоангидразу, происходит процесс распада угольной кислоты:

$$H_2CO_3 \rightarrow H_2O + CO_2 \uparrow$$


и СО2 уходит в альвеолу

Связывание H⁺ уменьшает сродство Hb к O₂


В ТКАНЯХ гемоглобин легко отдает О₂

Связывание O₂ уменьшает сродство Hb к H⁺ и CO₂

В ЛЕГКИХ гемоглобин легко отдает СО₂

Транспорт СО2 и О2

Газообмен в тканях

	Ткани	Тканевая Жидкость	Артериаль ная кровь
pO ₂	0	20-40	<u>100(96)</u>
pCO ₂	60-45	→ 46 -	→ <i>36-40</i>

Обмен О₂ между кровью и тканями

V%O2 крови =
$$1,34 \times [Hb] \times S_{O2} \times 10^{-5}$$

 S_{02} степень насыщения гемоглобина кислородом в % нормативное количество [Hb] в г/л =160г/л

Зная **число Хюфнера** (1,34) и степень насыщения гемоглобина кислородом (S_{O2}) в артериальном и венозном концах капилляра, можно рассчитать объемное содержание O_2 в крови:

$$V\%O2$$
 арт .крови = $1,34\times160\times97\times10^{-5}=0,20$ л

где В артериальной крови ($S_{O2} = 97\%$)

$$V\%O2$$
 вен. .крови = $1,34\times160\times75\times10^{-5}=0,16$ л

- в венозной ($S_{O2} = 75\%$)
- В артериальной крови ($S_{O2} = 97\%$) содержание химически связанного O_2 около 0,20 л на л крови; в венозной 0,16 л на л крови. Следовательно, *артерио-венозная разница* по O_2 равна 0,04. Это означает, что при прохождении крови через тканевые капилляры используется лишь 20% кислородной емкости.

Коэффициент утилизации О2

V%O2 арт .крови - V% O2в вен. крови x 100

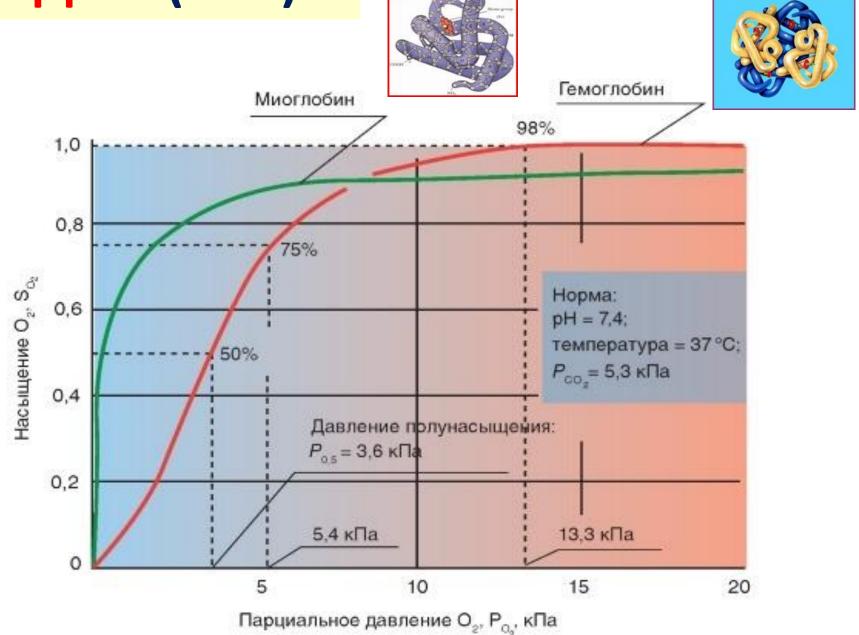
KYO2 =

V% O2 в арт. крови

KYO2= 30-40 %

V%02=20

8


V%02=12

20-100%

 $8 - x^{0/0}$

кдо (ког)

