РАЗДЕЛ З БИОХИМИЯ УГЛЕВОДОВ

Занятие 9

Тема: Химия углеводов. Переваривание и всасывание. Метаболизм гликогена, фруктозы и галактозы

Цель занятия: сформировать представления о биологической роли, молекулярных механизмах переваривания и всасывания углеводов, путях метаболизма углеводов в живых организмах

Практическая часть:

1. Строение, классификация углеводов

Задание 1.1 – Дайте определение понятию «углеводы».

Задание 1.2 — Дополните схему рисунка 9.1 предложенными терминами: моносахариды, полисахариды, олигосахариды, большого числа моносахаридных остатков, одного моносахаридного остатка, от 2 до 10 остатков моносахаридов, сахароза, лактоза, гликоген, фруктоза, гепарин, кератан-сульфат, целлюлоза, галактоза, гиалуроновая кислота, гомо-гетеро-.

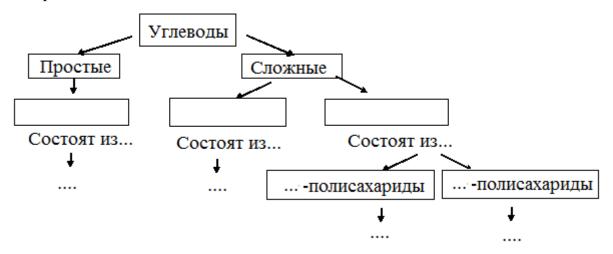


Рисунок 9.1 – Классификация углеводов

2. Переваривание углеводов

Задание 2.1 — Дополните схему рисунка 9.2 предложенными терминами: внутриклеточное пищеварение, полостное пищеварение, пристеночное пищеварение.

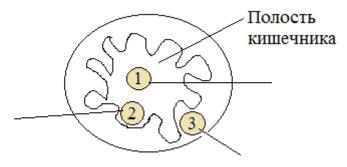


Рисунок 9.2 – Виды пищеварения по А.М. Уголеву

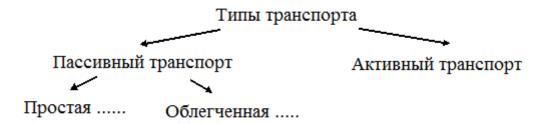

Задание 2.2 — Укажите роль клетчатки в пищеварении (5-7 примеров). **Задание 2.3** — Заполните таблицу 9.1.

Таблица 9.1 – Этапы переваривания углеводов

Отдел ЖКТ	рН	Фермент	Продукты
Ротовая полость			
Желудок			
12-перстная кишка			
Тонкий кишечник			

3. Всасывание углеводов

Задание 3.1 – Дополните схему рисунка 9.3.

Рисунок 9.3 – Типы транспорта

Задание 3.2 – Рассмотрите схему пассивного (облегченная диффузия) и активного транспорта глюкозы (рисунок 9.4) и охарактеризуйте каждый из них.

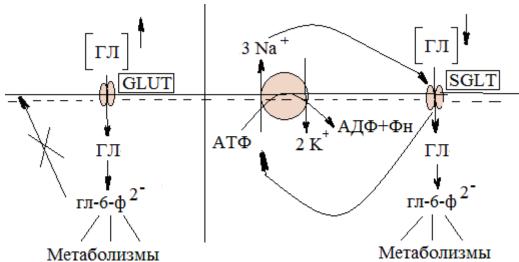


Рисунок 9.4 Облегченная диффузия и активный транспорт глюкозы

Задание 3.3 — Напишите полное название переносчиков глюкозы ГЛЮТ (GLUT) и ГЛНТ (SGLT) и расшифруйте аббревиатуру.

Задание 3.4 — Дополните предложения следующими терминами: реакция, клетка, фермент, отрицательный, пассивный.

а) при фосфорилировании глюкоза приобретает заряд, облегчающий ее взаимодействие с активными центрами, катализирующих последующие

- б) отрицательный заряд глюкозо-6-фосфата препятствует ее выходу из, т.е. срабатывает эффект «запирания» (Пояснить почему).
- в) снижение концентрации глюкозы путем ее превращения в глюкозо-6-фосфата способствует транспорту глюкозы через клеточные мембраны (Пояснить почему).

Задание 3.5 – Заполните таблицу 9.2.

Таблица 9.2 – Типы транспорта глюкозы через клеточную мембрану

Тип	Концентрация	Транспортер	Затрата	Тип ткани
транспорта	глюкозы в крови		энергии	
Пассивный				
транспорт				
Активный				
транспорт				

4. Белки-переносчики глюкозы через клеточную мембрану

Задание 4.1 — Дополните таблицу 9.3, используя предложенные варианты:

- а) мышечная и жировая ткань;
- б) печень, β-клетки поджелудочной железы;
- в) нервы, мозг, плацента;
- г) 1 мМоль/л, 5 мМоль/л, 10-20 мМоль/л.

Таблица 9.3 – Виды глюкозных транспортеров

	Название транспортера	Кm	Место локализации	Функции
1	ГЛЮТ 1		большинство тканей	транспорт глюкозы
2	ГЛЮТ 2			транспорт глюкозы при высоких концентрациях
3	ГЛЮТ 3			транспорт глюкозы
4	ГЛЮТ 4			транспорт глюкозы в присутствии инсулина
5	ГЛЮТ 5		слизистая тонког кишечника	транспорт фруктозы

Задание 4.2 – Постройте графики зависимости скорости транспорта глюкозы через мембрану (рисунок 9.5) для ГЛЮТ 1, 2, 3.

Задание 4.3 — Поясните значения отличий Кт белков-транспортеров глюкозы для различных тканей.

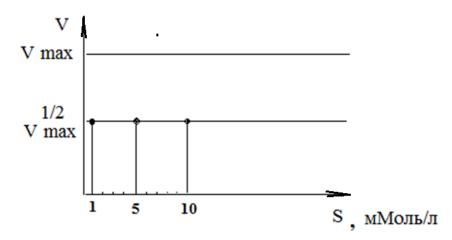


Рисунок 9.5 – Графики зависимости скорости транспорта глюкозы для глюкозных транспортеров

5. Пути обмена глюкозо-6-фосфата в клетке

Задание 5.1 — Используя схему обмена глюкозо-6-фосфата (рисунок 9.6) дополните следующие предложения:

- а) распад глюкозы с целью получения (аэробный и анаэробный гликолиз).
 - б) синтез запасающей формы глюкозы
- в) распад глюкозы для получения других моносахаридов (.....,, и восстановленного NADP ($\Pi\Phi\Pi$).
 - г) синтез других соединений:

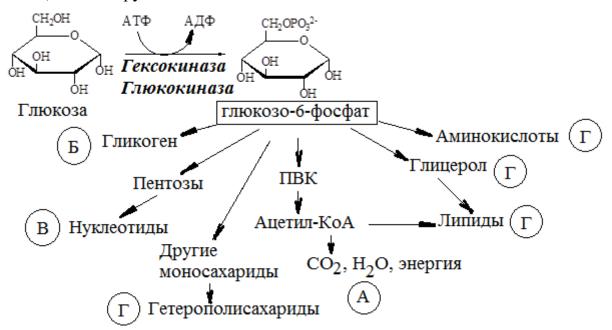


Рисунок 9.6 – Схема обмена глюкозо-6-фосфата

Задание 5.2 — Нарисуйте схему субстратов биологического окисления (рисунок 1.2) и покажите на ней цепочки метаболических превращений глюкозы в другие соединения.

6. Метаболизм гликогена

Задание 6.1 – Дополните следующие предложения:

- а) биосинтез гликогена из глюкозы называется
- б) активно протекает в и
- в) процесс распада гликогена называется

Задание 6.2 —Перерисуйте схему синтеза и мобилизации гликогена (рисунок 9.7) и отметьте разными цветами пути синтеза и катаболизма гликогена. Допишите ферменты.

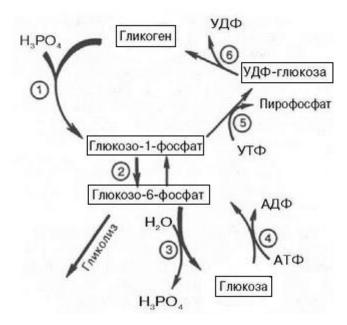


Рисунок 9.7 – Синтез и мобилизация гликогена [2]

Задание 6.3 — Дополните схему на рисунке 9.8, используя следующие термины: $AT\Phi$, $AJ\Phi$, H_2O , $\Phi_{\rm H}$. Укажите ферменты.

Задание 6.4 – Поясните значение дефосфорилирования глюкозы в печени.

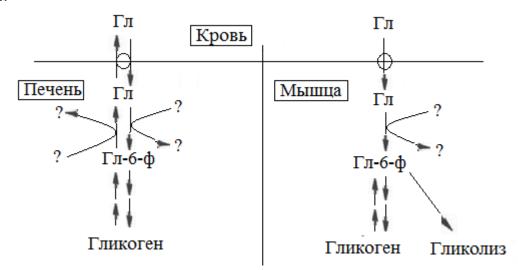


Рисунок 9.8 – Метаболизм гликогена в печени и мышцах

Задание 6.5 – Заполните таблицу 9.4.

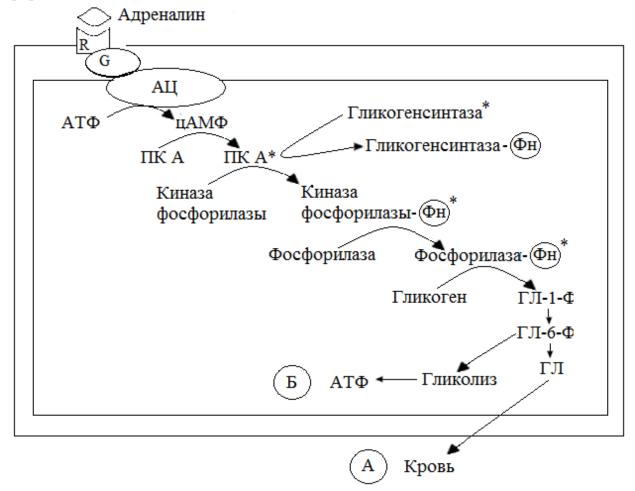
Таблица 9.4 — Сравнительная характеристика мобилизации гликогена в печени и мышцах

Признаки для сравнения	Мышцы	Печень

1.	Количество запасаемого гликогена	
2.	Конечный продукт распада гликогена	
3.	Дальнейшее превращение конечного	
	продукта распада	

7. Регуляция синтеза и мобилизации гликогена

Задание 7.1 — Заполните таблицу 9.5, поставив знаки + или — (указав стимулирующее или ингибирующее действие указанных в таблице факторов).


Таблица 9.5 – Регуляция метаболизма гликогена в печени

Признаки	Синтез гликогена	Мобилизация гликогена
Высокая концентрация глюкозы		
Высокий уровень инсулина		
Высокий уровень глюкагона		

Задание 7.2 – Укажите ферменты, регулирующие скорость синтеза и распада гликогена.

- а) для синтеза гликогена это
- б) для мобилизации гликогена это......

Задание 7.3 Перерисуйте рисунок 9.9 и выделите разными цветами ферменты синтеза гликогена и его мобилизации.

Рисунок 9.9 – Аденилатциклазный механизм мобилизации гликогена

Задание 7.4 — Сдеайте выводы о фосфорилировании ферментов мобилизации и синтеза гликогена. Какой путь включается при фосфорилировании ферментов, а какой — при дефосфорилировании. Запишите вывод. Могут ли в клетке одновременно протекать процессы синтеза и процессы распада гликогена?

Обозначьте метаболические пути печени и мышц (укажите правильный вариант на схеме для A и B).

Задание 7.5 — Инсулин активирует ферменты фосфодиэстеразу и протеинфосфатазу. Какие реакции катализируют эти ферменты? Как изменится концентрация глюкозы в крови в ответ на действие инсулина?

8. Другие моносахариды, активно участвующие в углеводном обмене *Задание 8.1 – Заполните таблицу 9.6.*

Таблица 9.6 – Особенности метаболизма в организме галактозы и фруктозы

Признаки	Галактоза	Фруктоза
Входит в состав следующих дисахаридов		
Входит в состав следующих продуктов питания		
Орган, в котором протекает метаболизм		
Название заболеваний обмена		
Возраст манифестации заболеваний		
Клинические проявления		

10. Общий вывод: формулируется самостоятельно исходя из цели занятия.

Занятие 10

Тема: Тканевый обмен углеводов. Анаэробный и аэробный гликолиз Цель занятия: сформировать знания о путях и механизмах обмена глюкозы в организме

Практическая часть:

1. Анаэробное расщепление глюкозы - молочнокислое брожение (гликолиз)

Задание 1.1 — Нарисуйте схему превращения субстратов биологического окисления (рисунок 1.2) и выполните следующие задания:

- а) допишите реакцию молочнокислого брожения;
- б) обозначьте на схеме анаэробный и аэробный гликолиз.

1.1. Киназные реакции гликолиза

Задание 1.1.1 — Выпишите 4 киназные реакции гликолиза. Укажите названия и класс ферментов, катализирующих эти реакции.

Задание 1.1.2 — Укажите какие из 4 вышеперечисленных киназных реакций гликолиза являются энергозатратными, а какие — энергопродуцирующими.

Задание 1.1.3 — Укажите какие из 4 киназных реакций гликолиза являются реакциями субстратного фосфорилирования.

Задание 1.1.4 — Рассчитайте энергетический баланс молочнокислого брожения. Дополните полученными данными, задание 1.1.

1.2. Гликолитическая оксидоредукция

Задание 1.2.1 — Нарисуйте схему реакций гликолитической оксидоредукции (рисунок 10.1).

Задание 1.2.2 — Назовите ферменты (А и Б), участвующие в гликолитической оксидоредукции. Укажите классы ферментов.

Задание 1.2.3 — Укажите биологическую роль процесса гликолитической оксидоредукции.

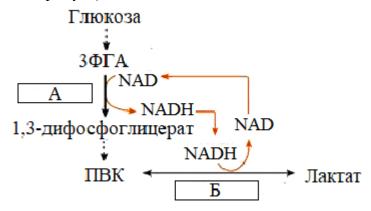


Рисунок 10.1 – Схема реакций гликолитической оксидоредукции

2. Анаэробное расщепление глюкозы – спиртовое брожение

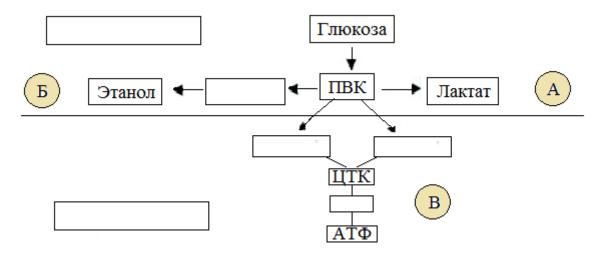


Рисунок 10.2 — Схема анаэробного и аэробного метаболических путей глюкозы в клетке

Задание 2.1 — Дополните схему рисунка 10.2 и укажите внутриклеточную локализацию этапов A, E и B.

Задание 2.2 – Укажите ферменты и конечные продукты молочнокислого и спиртового брожения.

Задание 2.3 — Укажите сходства и отличия молочнокислого и спиртового брожений.

Задание 2.4 – Допишите реакции спиртового брожения в схему задания 1.1.

3. Аэробный гликолиз

Задание 3.1 — Запишите суммарное уравнение пируватдегидрогеназного (ПВКДГ) комплекса. Укажите название ферментов, коферментов, субстрата и продукта реакции.

Рисунок 10.3 – Суммарное уравнение реакций пируватдегидрогеназного комплекса

Задание 3.2 — На схеме задания 1.1. укажите локализацию в клетке пируватдегидрогеназного комплекса. Выделите на схеме конечный продукт метаболизма при работе ПВКДГ комплекса.

Задание 3.3 — Напишите формулу витамина B_1 и его активной (коферментной) формы.

Задание 3.4 – Укажите признаки гипо- и авитаминоза витамина B_1 .

Задание 3.5 – Дополните предложение, выбрав правильный вариант из предложенных ниже:

Слова для справки: ЦТК, ДЦ, ПВК, H_2O , CO_2 .

- а) аэробный гликолиз это процесс расщепления глюкозы до ... и ...
- б) расставьте в правильной последовательности следующие этапы аэробного гликолиза: *ЦТК*, *ДЦ*, *ПВКДГ комплекс*, *окисление глюкозы до ПВК*.
 - 1);
 - 2);
 - 3);
 - 4)

Задание 3.6 — Используя схему окисления субстратов биологического окисления (рисунок 1.2) рассчитайте энергетический баланс полного аэробного окисления 1 молекулы глюкозы. Дополните, полученными данными, задание 1.1.

Задание 3.7 — Сравните процессы аэробного и анаэробного гликолиза (молочнокислого брожения). Заполните таблицу 10.1.

Таблица 10.1 – Сравнительная характеристика анаэробного (молочнокислого брожения) и аэробного гликолиза (включая реакции ПВКДГ, ЦТК и ДЦ Мх)

Характеристика	Анаэробный гликолиз	Аэробный гликолиз
Возможное участие		
кислорода		
Суммарное уравнение		
Тканевая локализация		
Клеточная локализация		
Конечные продукты		
Энергетический баланс		

4. Регуляция гликолиза и гликогенолиза. Эффект Пастера

Задание 4.1 — Заполните таблицу 10.2, пользуясь рисунком 10.5 и следующими терминами: низкая концентрация глюкозы, высокая концентрация глюкозы, $AT\Phi$, $AД\Phi$, NAD^+ , $NADH^+ + H^+$, инсулин, адреналин, глюкагон, Ca^{2+} .

Таблица 10.2 – Регуляция гликолиза и гликогенолиза

Активаторы	Ингибиторы

Задание 4.2 — Рассмотрите рисунок 10.4 и укажите влияние гормонов инсулина и глюкагона на уровень глюкозы в крови.

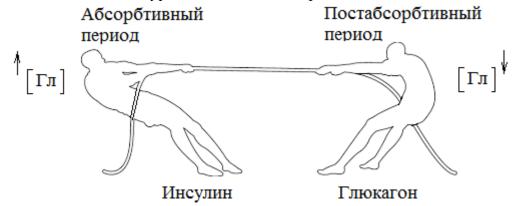


Рисунок 10.4 – Инсулин - глюкагоновый индекс

Задание 4.2 — Рассмотрите схему рисунка 10.5. Укажите основную причину определяющую количество синтезируемой молочной кислоты.

Задание 4.3 — Поясните сущность и механизм эффекта Пастера. Запишите уравнения реакции, катализируемые ЛДГ и ПВКДГ комплексом.

Анаэробный гликолиз (отсутствие кислорода)

Аэробный гликолиз (присутствие кислорода)

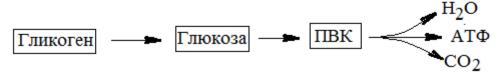
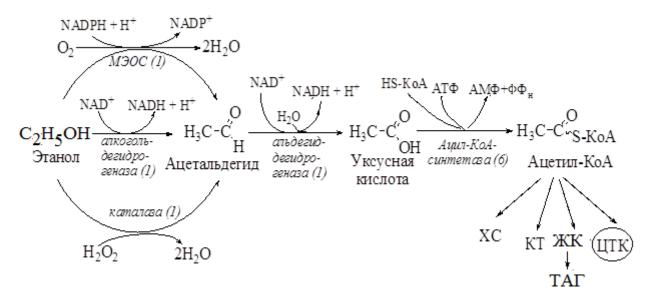



Рисунок 10.5 – Схема анаэробного и аэробного окисления глюкозы

5. Метаболизм этанола в организме. Механизм токсического действия этанола и пути детоксикации (АДГ, МЭОС, каталаза)

Задание 5.1 — Запишите схему рисунка 10.6. и обозначьте разными цветами 3 пути метаболизма этанола.

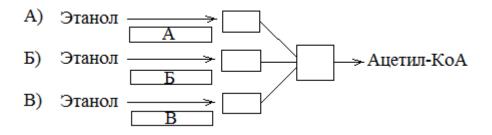


Рисунок 10.6 – Схема метаболизма этанола

Задание 5.2 — Дополните схему 10.7, обозначив ферменты A, B, коферменты и промежуточные метаболиты.

Задание 5.3 – Охарактеризуйте каждый путь метаболизма этанола.

Задание 5.4 – Поясните токсическое действие этанола на организм.

Рисунок 10.7 – Пути метаболизма этанола

6. Общий вывод: формулируется самостоятельно исходя из цели занятия.

Занятие 11

Тема: Тканевой обмен углеводов. Глюконеогенез. Пентозофосфатный путь

Цель занятия: сформировать представления о путях метаболизма глюкозы **Практическая часть:**

1. Глюконеогенез

1.1. Общая характеристика глюконеогенеза

Задание 1.1.1 — Нарисуйте схему образования субстратов биологического окисления (рисунок 1.2) и укажите локализацию метаболических путей глюконеогенеза (ГНГ).

Задание 1.1.2 – Заполните таблицу 11.1, выписав названия ферментов необратимых реакций гликолиза, а также соответствующие им реакции ГНГ.

Таблица 11.1 – Необратимые реакции гликолиза и ГНГ

Гликолиз		Глюконеоген	нез
Реакция	Фермент (его класс)	Реакция	Фермент (его класс)
1. гл → гл-6-ф			
2. фр-6-ф → фр-1,6-диф			
3. ФЕП →ПВК			

Задание 1.1.3 — Дополните схему рисунка 11.1 недостающими веществами и подпишите названия ферментов в этих реакциях. Укажите классы ферментов.

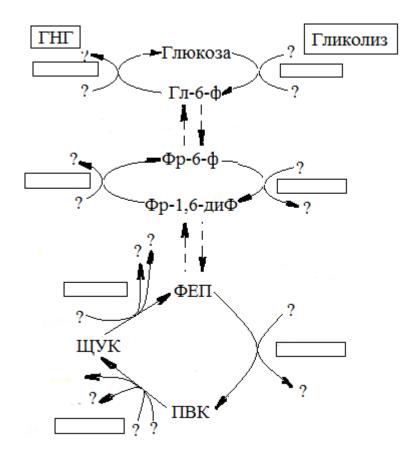


Рисунок 11.1 – Схема сравнения реакций гликолиза и глюконеогенеза

1.2. Субстраты ГНГ. Цикл Кори и цикл Фелига

Задание 1.2.1 — Запишите схему рисунка 11.2. Укажите стрелками в какие метаболиты ГНГ превращаются лактат, аминокислоты и глицерол.

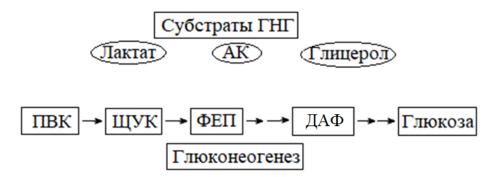


Рисунок 11.2 – Субстраты глюконеогенеза

Задание 1.2.2 — На схеме задания 1.1.1. укажите субстраты ГНГ и их метаболические цепочки.

Задание 1.2.3 — Нарисуйте схему глюкозо-лактатного цикла (цикла Кори) (рисунок 11.3) и выполните следующие задания:

а) дополните схему соответствующим уравнением реакции, допишите кофермент, фермент и его класс;

- б) укажите количество ATФ, которое образуется в мышцах при анаэробном окислении глюкозы и тратится в печени для синтеза глюкозы de novo;
 - в) укажите биологическую роль цикла Кори.

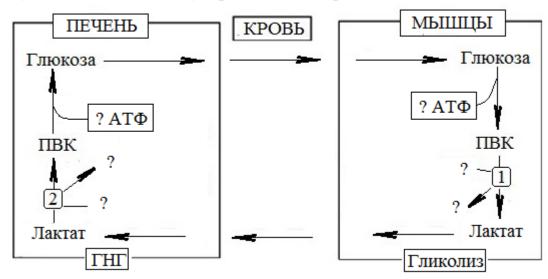


Рисунок 11.3 – Глюкозо-лактатный цикл (Цикл Кори)

Задание 1.2.4 — Нарисуйте схему глюкозо-аланинового цикла (цикла Фелига) (рисунок 11.4) и выполните следующие задания:

- а) допишите в схему вещества А, Б и В;
- б) укажите фермент, обозначенный цифрами 1 и 2;
- в) укажите биологическую роль цикла Фелига.

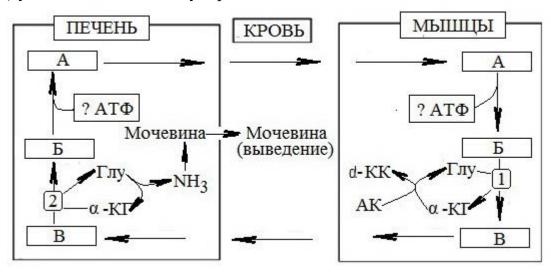


Рисунок 11.4 – Схема глюкозо-аланинового цикла (цикла Фелига)

Задание 1.2.5 — Заполните таблицу 11.2, указав биологическую роль ГНГ, циклов Кори и Фелига.

Таблица 11.2 – Биологическая роль ГНГ, циклов Кори и Фелига.

Метаболические пути	Биологическая роль

ГНГ	
Цикл Кори	1. 2.
Цикл Фелига	1. 2.

Задание 1.2.6 — Охарактеризуйте ГНГ, выписав правильные утверждения из приведенных ниже:

- а) происходит синтез АТФ;
- б) субстратом для синтеза глюкозы служит гликоген;
- в) все ферменты локализованы только в цитоплазме;
- г) ферменты локализованы в цитоплазме и митохондриях;
- д) субстратами служат лактат, ПВК, глицерол, некоторые аминокислоты;
- е) протекает в основном в печени и почках;
- ж) протекает во всех тканях организма.

2. Пентозофосфатный путь

Задание 2.1 — Перепишите схему пентозофосфатного пути (ПФП) (рисунок 11.5), выделите на схеме стадии ПФП, а также вставьте полные названия метаболитов.

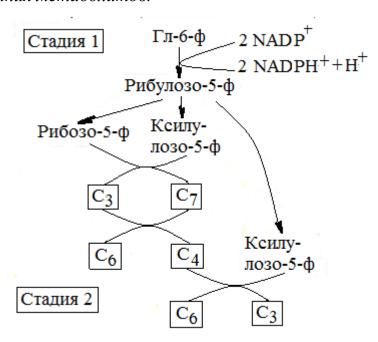


Рисунок 11.5 – Схема пентозофосфатного пути

Задание 2.2 — Перепишите схему окислительной стадии ПФП (рисунок 11.6). Укажите функции продуктов этой стадии пентозофосфатного пути, дополнив схему следующими терминами: АТФ, NAD, FAD, PHK, AMФ, ДНК, катаболизм и получение энергии, антиоксидантная защита, синтез XC, детоксикация, синтез ЖК.

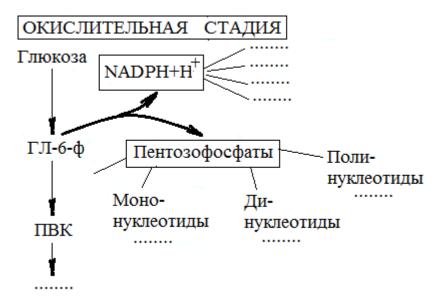


Рисунок 11.6 – Схема окислительной стадии пентозофосфатного пути

Задание 2.3 – Заполните таблицу 11.3, используя схему 11.6.

Таблица 11.3 – Функции NADPH

	Ткань (орган)	Процессы
1	Жировая ткань	
2	Печень	
3	Надпочечники	
4	Эритроциты	

Задание 2.4 — Охарактеризуйте $\Pi\Phi\Pi$, выписав правильные утверждения из приведенных ниже:

- а) происходит синтез АТФ;
- б) окисляется до 90% всей глюкозы клетки;
- в) все ферменты локализованы в цитоплазме;
- г) все ферменты локализованы в митохондриях;
- д) происходит образование NADPH+H+;
- е) протекает в активно пролиферирующих тканях;
- ж) протекает во всех тканях организма.
- 3. Общий вывод: формулируется самостоятельно исходя из цели занятия.

Занятие 12

Тема: Регуляция уровня глюкозы в крови. Патология углеводного обмена Цель занятия: сформировать представления о молекулярных и физиологических механизмах регуляции уровня глюкозы в крови, механизмах основных нарушений углеводного обмена, методах их лабораторной диагностики

Практическая часть:

1. Механизмы регуляции уровня глюкозы в крови. Регуляция инсулином

Задание 1.1 – Рассмотрите рисунок 12.1 и поясните каким образом нормализуется уровень глюкозы в крови. Назовите инсулинзависимые ткани.

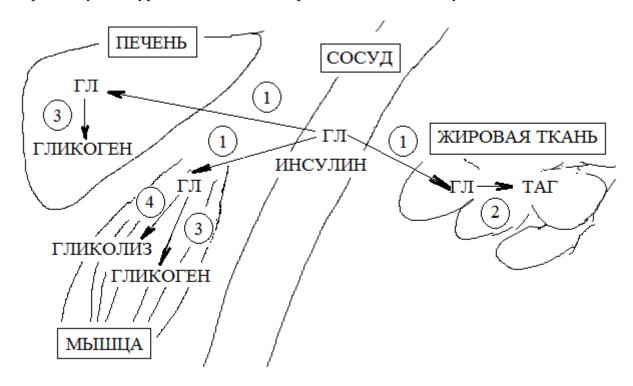


Рисунок 12.1 – Схема регуляции уровня глюкозы в крови инсулином

Задание 1.2 — Охарактеризуйте роль инсулина в тканевом метаболизме глюкозы. Отметьте на схеме 12.2 знаками «+» и «--» стимулирующие и ингибирующие эффекты инсулина.

Рисунок 12.2 – Эффекты влияния инсулина

2. Механизмы регуляции уровня глюкозы в крови. Срочный и постоянный механизмы

Задание 2.1 — Перерисуйте рисунок 12.3 и поясните, на чем основан срочный механизм регуляции уровня глюкозы в крови.

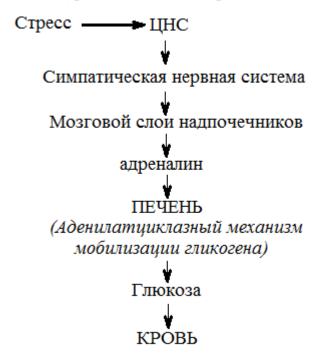


Рисунок 12.3 – Срочный механизм регуляции глюкозы в крови

Задание 2.2 — Перерисуйте рисунок 12.4 и поясните, на чем основан постоянный механизм регуляции уровня глюкозы в крови.

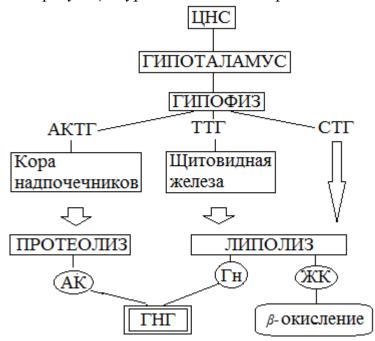


Рисунок 12.4 – Постоянный механизм регуляции уровня глюкозы в крови

Задание 2.3 – Заполните таблицу 12.1.

Таблица 12.1 – Срочный и постоянный механизмы регуляции

Механизм	Продолжительность	Источник	Гормоны участвующие в
регуляции	функционирования	глюкозы	регуляции
Срочный			
Постоянный			

Задание 2.4 — Заполните таблицу 12.2, выбирая правильные варианты ответов из приведенных ниже:

Таблица 12.2 – Влияние гормонов на обмен углеводов

Гормон	Место	Ткани-мишени	Влияние на обмен	Влияние на
	синтеза		углеводов	концентрацию
				глюкозы в крови
Инсулин		А) печень;		
		Б) мышцы;		
		В) жировая		
		ткань.		
Адреналин		А) печень;		
		Б) мышцы;		
Кортизол		А) печень;		
		Б) мышцы;		

- 1) <u>Место синтеза гормона</u>: кора надпочечников, мозговой слой надпочечников, α-клетки островков Лангерганса поджелудочной железы, β-клетки островков Лангерганса поджелудочной железы;
- 2) Влияние на обмен углеводов: глюконеогенез, мобилизация гликогена, синтез гликогена, поступление глюкозы в клетки;
 - 3) Влияние на концентрацию глюкозы в крови: повышает, снижает.

Задание 2.5 — Рассмотрите рисунок 12.5, проанализируйте регуляцию уровня глюкозы в крови и выполните следующие задания:

- а) укажите концентрацию глюкозы, соответствующую состоянию нормо-, гипо- и гипергликемии;
- б) выпишите факторы, вызывающие снижение и повышению уровня глюкозы в крови:

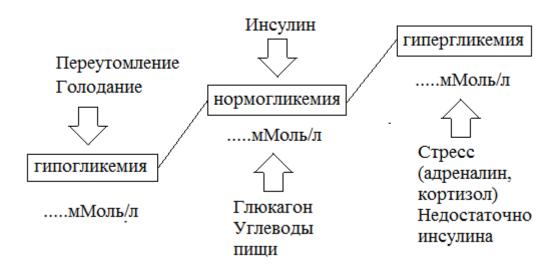


Рисунок 12.5 — Регуляция уровня глюкозы в крови при нормо-, гипои гипергликемии

Задание 2.6 — Перепишите схему поддержания гомеостаза глюкозы в крови (рисунок 12.6). Укажите источник глюкозы для каждого временного этапа, выбирая правильные варианты, из приведенных ниже: ГНГ, гликогенолиз, глюкоза пищи, ГНГ и частично гликогенолиз.

Рисунок 12.6 – Схема поддержание гомеостаза глюкозы в крови

Задание 2.7 — Заполните таблицу 12.3. Для каждого временного этапа укажите название гормона или гормонов, контролирующих уровень глюкозы в крови, выбирая правильные варианты, из приведенных ниже: глюкагон, инсулин, в основном кортизол, глюкагон и в меньшей степени кортизол.

Таблица 12.3 – Гормоны, контролирующие уровень глюкозы в крови

	1 /	1 15 , 51		<u> </u>
	Абсорбтивный	Постабсорбтивный	Начальный	Продолжительное
	период	период	период	голодание
			голодания	
Название				
гормона				

Задание 2.8 – Перепишите схему распределения глюкозы в организме (рисунок 12.7). Укажите ткани, использующие глюкозу для каждого временного этапа:

- а) головной мозг и эритроциты;
- б) все ткани кроме мышечной, жировой и печени;
- в) ткани;
- г) все ткани кроме печени и жировой, мышечная ткань только при физической нагрузке.

Рисунок 12.7 — Схема распределения глюкозы в организме при разных физиологических состояниях

3. Сахарный диабет 1 типа. Причины возникновения, биохимические сдвиги при инсулярной недостаточности, основные клинические проявления СД. Диагностика СД

Задание 3.1 — Нарисуйте схему биохимических сдвигов при сахарном диабете I типа (рисунок 12.8) и выполните следующие задания:

- а) обозначьте разными цветами пути метаболизма для разных органов и тканей;
 - б) поясните каждый метаболический эффект, изображенный на схеме:
 - 1) кровеносный сосуд:.....
 - 2) печень:
 - 3) жировая ткань:
 - 4) мышца:
 - 5) повышение глюкозы в крови за счет:

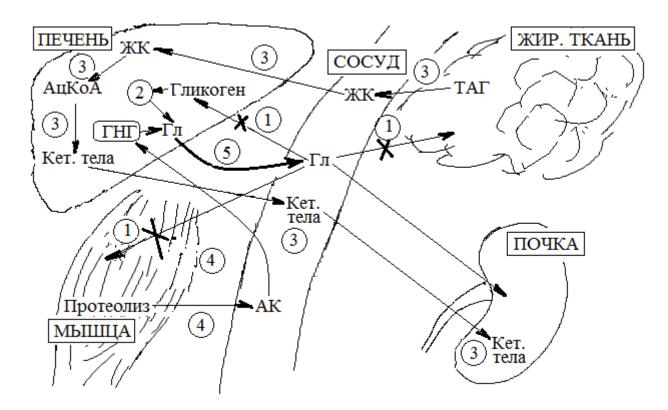


Рисунок 12.8 – Схема биохимических сдвигов при сахарном диабете I типа

Задание 3.2 — Из предложенных ниже утверждений, выпишите правильные, отражающие клинические проявления СД первого типа:

- а) полидипсия, полиурия, полифагия (синдром 3-х "П");
- б) потеря массы тела;
- в) гипергликемия, глюкозурия;
- г) кетоацидоз (кетонемия, кетонурия);
- д) пигментация кожных покровов;
- е) нарушение регенерации тканей, трофические язвы;
- ж) множественный кариес;
- з) атеросклероз;
- и) отказ от еды;
- к) микроангиопатии, нейропатии;
- л) хроническая почечная недостаточность;
- м) слепота.

Задание 3.3 — Перерисуйте схему гликемической кривой здорового пациента и больного инсулинзависимым сахарным диабетом (рисунок 12.9). Отметьте, какой из графиков отражает динамику изменения уровня глюкозы в крови здорового пациента, а какой — больного (A-?; Б-?).

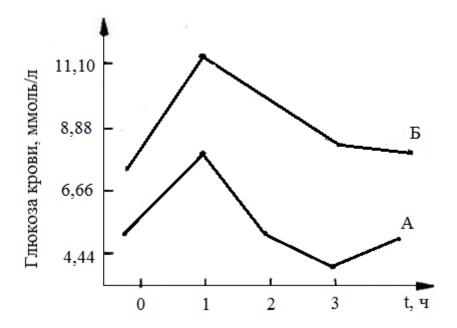


Рисунок 12.9 — Схема гликемических кривых здорового человека и больного инсулинзависимым сахарным диабетом

Задание 3.4 — Охарактеризуйте принципы построения и анализа гликемических кривых, закончив следующие предложения, следующими терминами: $1 \, \text{г}$; $1 \, \text{кг}$; $3.3 - 5.5 \, \text{ммоль/л}$; $7.0 - 7.5 \, \text{мМ/л}$; $30 \, \text{мин}$; $1 \, \text{ч}$; $1,5-2 \, \text{ч}$.

- а) исходный уровень глюкозы натощак должен быть в пределах;
- б) глюкоза принимается из расчета на массы тела;
- в) каждые в крови определяют уровень глюкозы;
- г) максимальный уровень глюкозы в крови достигается примерно через:
- д) максимальный уровень глюкозы в крови составляет примерно (выше исходного не более чем на 30-50%);
- е) снижение уровня глюкозы в крови до исходного уровня происходит через.....

Задание 3.5 – Заполните таблицу 12.4.

Таблица 12.4 — Концентрация глюкозы в крови здорового пациента и пациента с сахарным диабетом

	Концентрация глюкозы в крови		
Время (ч)	Здоровый пациент Пациент с СД		
0			
1			
1.5-2			

Задание 3.6 – Заполните таблицу 12.5.

Таблица 12.5 – Лабораторная диагностика СД

	Метод диагностики	Суть метода
1	Определение глюкозы в	
	крови	

2	Определение глюкозы в	
	моче	
3	Определение кетоновых	
	тел в крови	
4	Определение кетоновых	
	тел в моче	
5	Построение	
	гликемических кривых	
6	Определение	
	гликозилированного	
	гемоглобина	
7	Определение	
	С-пептида	
8	Антитела к клеткам	
	островков Лангерганса	

Задание 3.7 — Заполните таблицу 12.6, выбирая правильные варианты ответов из приведеных ниже:

- а) инсулиннезависимый / инсулинзависимый;
- б) у детей и молодых людей (до 30 лет) / у взрослых 40 лет;
- в) норма или повышена / снижена
- г) наследственные факторы + ожирение и резистентность клеток к действию инсулина / нарушение образования инсулина;
 - д) норма или повышен / ниже нормы;
 - е) диета, сахароснижающие препараты / Инсулин.

Таблица 12.6 – Сравнительная характеристика сахарного диабета I и II типов

	Критерии	СД 1 тип	a	СД 2 типа
1	Название			
2	Возраст манифестации			
3	Масса тела			
4	Причины			
5	Инсулин	•	·	
6	Лечение			

4. Общий вывод: формулируется самостоятельно исходя из цели занятия.

ЗАНЯТИЕ 13

Тема: Итоговое занятие по разделу «Биохимия углеводов»

Цель занятия: Самоконтроль усвоения знаний по вопросам раздела.

Практическая часть:

Задание 13.1 — Ответьте на вопросы кроссворда и запишите правильные варианты ответов (рисунок 13.1).

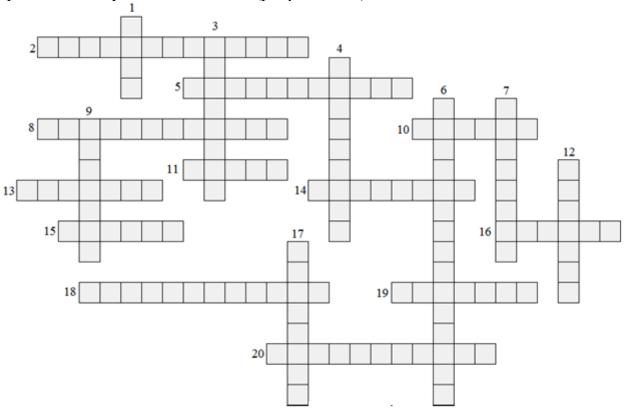


Рисунок 13.1 – Кроссворд по разделу «Биохимия углеводов».

По горизонтали: 2. Процесс синтеза глюкозы из неуглеводных предшественников; 5. Органелла, в которой локализован конечный этап аэробного окисления глюкозы; 8. Процесс распада гликогена; 10. АК, используемая для синтеза глюкозы в цикле Фелига; 11. Фамилия ученого, предложившего глюкозо-аланиновый цикл; 13. Субстрат для синтеза лактата; 14. Один из субстратов ГНГ; 15. Заболевание, развивающиеся вследствие дефицита инсулина; 16. Конечный продукт анаэробного гликолиза; 18. Продукт метаболизма этанола под действием АДГ; 19. Фермент расщепления крахмала; 20. Фермент фосфорилирования глюкозы.

По вертикали: 1. Фамилия ученого, предложившего глюкозо-лактатный цикл; 3. Форма депонирования углеводов в организме; 4. Гормон, повышающий уровень глюкозы в крови по срочному механизму; 6. Фермент синтеза гликогена; 7. Место локализации анаэробного гликолиза; 9. Гормон, снижающий уровень глюкозы в крови; 12. Фермент, расщепляющий дисахарид до глюкозы и галактозы; 17. Процесс анаэробного окисления глюкозы.